References
- Ahmadlou, M.; Al-Fugara, A.; Al-Shabeeb, A.R.; Arora, A.; Al-Adamat, R.; Pham, Q.B.; Al- Ansari, N.; Linh, N.T.T.; Sajedi, H. (2020) Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks. J Flood Risk Manag, 14. https://doi.org/10.1111/jfr3.12683
- Anni, A.H.; Cohen, S.; Praskievicz, S. (2020) Sensitivity of urban flood simulations to stormwater infrastructure and soil in-filtration. J Hydrol, 588, https://doi.org/10.1016/j.jhydrol.2020.125028
- Antzoulatos, G.; Kouloglou, I.-O.; Bakratsas, M.; Moumtzidou, A.; Gialampoukidis, I.; Karakostas, A.; Lombardo, F.; Fiorin, R.; Norbiato, D.; Ferri, M.; Symeonidis, A.; Vrochidis, S.; Kompatsiaris, I. (2022) Flood Hazard and Risk Mapping by Applying an Explainable Machine Learning Framework Using Satellite Imagery and GIS Data. Sustainability, 14, 3251. https://doi.org/10.3390/su14063251
- ArcGIS (2022) Documentation. Available online: https://desktop.arcgis.com/en/documentation/ (accessed on 25.10.2022)
- Arhiva Administratiei Bazinale de Apa (ABA) Crisuri, 2023.
- Arnold, C.L.; Gibbons, C.J. (1996) Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. J Am Plan Assoc, 62, 243–258, https://doi.org/10.1080/01944369608975688
- Cai, S.; Fan, J.; Yang, W. (2021) Flooding Risk Assessment and Analysis Based on GIS and the TFN-AHP Method: A Case Study of Chongqing, China. Atmosphere, 12(5), 623, https://doi.org/10.3390/atmos12050623
- Caluseru, A.L.; Cojocariu, L.; Horablaga, M.N.; Bordean, D-M.; Horablaga, A.; Cojocariu, A.; Borozan A.B.; Iancu, T. (2013) Romanian National Strategy for the conservation of biodiversity 2013 – 2020 – integration of european environmental policies. SGEM 2013 Conf Proceedings, 2, 723-728. https://doi.org/10.5593/SGEM2013/BE5.V2/S23.013
- Chen, J.; Zhang, Y.; Chen, Z.; Nie, Z. (2015) Improving assessment of groundwater sustainability with analytic hierarchy process and information entropy method: A case study of the Hohhot Plain, China. Environ Earth Sci, 73, 2353–2363, https://doi.org/10.1007/s12665-014-3583-0
- Climatic Database (2023) Weather in Romania. Available online: https://rp5.ru/Weather_in_Romania (accessed on 23.01.2023)
- Copacean, L.; Zisu, I.; Mazare, V.; Cojocariu, L. (2019) Analysis of land use changes and their influence on soil features. Case study: Seca? village, Timi? County (Romania), PESD, 13, 2. https://doi.org/10.2478/pesd-2019-0032
- Copernicus Land Monitoring Service (2022) Corine Land Cover - CLC. Available online at: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 20.05.2022)
- Copernicus Open Access Hub (2023) Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 23.01.2024)
- Costache, R.; Zaharia, L. (2017) Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment—Case study: Bâsca Chiojdului River catchment (Romania). J Earth Syst Sci, 126, 59. https://doi.org/10.1007/s12040-017-0828-9
- Covaci, O.; Gazda, M.R.; Niga, B.I.; Enea, A.; Iosub, M.; Tirnovan, A. (2023) Automation of the Rational Formula using GIS infrastructure – Case study Siret River Basin – Romania. PESD, 17(2), 31-44. https://doi.org/10.47743/pesd2023172003
- Craciun, A.; Costache, R.; Barbulescu, A.; Pal, S.C.; Costache, I.; Dumitriu, C.?. (2022) Modern Techniques for Flood Susceptibility Estimation across the Deltaic Region (Danube Delta) from the Black Sea’s Romanian Sector. J Mar Sci Eng, 10, 1149. https://doi.org/10.3390/jmse10081149
- Das, J.; Bhattacharya, S.K. (2023) Monitoring and managing multi-hazards: a Multidisciplinary Approach. Springer, Cham. https://doi.org/10.1007/978-3-031-15377-8
- Diakakis, M. (2011) A method for flood hazard mapping based on basin morphometry: application in two catchments in Greece. Nat Hazards, 56(3), 803–814. https://doi.org/10.1007/s11069-010-9592-8
- Diaz, J.H. (2006) Global Climate Changes, Natural Disasters, and Travel Health Risks. J Travel Med, 13, 361–372. https://doi.org/10.1111/j.1708-8305.2006.00072.x
- Dicu, D.; Bertici, R.; Herbei, M.; Sala, F. (2022) Characterization of a Pasture Area Based on Soil Agrochemical Indices and Improvement Measures. Sci Pap Ser Manag Econ Eng Agric Rural Dev, 22(1), 167–174.
- Dragomir, A.; Tudorache, A-V.; Costache, R-D. (2020) Assessment of flash-flood susceptibility in small river basins. PESD, 14(1), 119-130. https://doi.org/10.15551/pesd2020141010
- Dube, M. (2018) Bihar Floods: A Report on Bihar Floods 2016; Bihar Disaster Management Authority, Government of Bihar: Patna, India; p. 36.
- Eriyagama, N.; Thilakarathne, M.; Tharuka, P.; Munaweera, T.; Muthuwatta, L.; Smakhtin, V.; Premachandra, W.W.; Pindeniya, D.; Wijayarathne, N.S.; Udamulla, L. (2017) Actual and perceived causes of flood risk: Climate versus anthropogenic effects in a wet zone catchment in Sri Lanka. Water Int, 42, 874–892, https://doi.org/10.1080/02508060.2017.1373321
- European Environment Agency (EEA) (2016) Digital Elevation Model (DEM). Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring- service-eu-dem (accessed on 13.11.2016)
- Foudi, S.; Osés-Eraso, N.; Tamayo, I. (2015) Integrated spatial flood risk assessment: the case of Zaragoza. Land Use Policy, 42, 278–292. https://doi.org/10.1016/j.landusepol.2014.08.002
- Geospatial (2021) România: seturi de date vectoriale generale. Available online: http://geo- spatial.org/vechi/download/romania-seturi-vectoriale (accessed on 10.11.2021)
- GIS & RS Solution, Flood Susceptibility Mapping using GIS-AHP Multi-criteria Analysis. Available online: https://www.youtube.com/watch?v=Lbbyi1YV2Hc&list=RDCMUCs1fLqqz84QbQ89DnRmME VQ&index=1 (accessed on 16.01.2024)
- Hagos, Y.G.; Andualem, T.G.; Yibeltal, M. et al. (2022) Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Appl Water Sci, 12, 148. https://doi.org/10.1007/s13201-022-01674-8
- Hammami, S.; Zouhri, L.; Souissi, D. et al. (2019) Application of the GIS based multi- criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arab J Geosci, 12, 653. https://doi.org/10.1007/s12517-019-4754-9
- He, B.; Huang, X.; Ma, M.; Chang, Q.; Tu, Y.; Li, Q.; Zhang, K.; Hong, Y. (2017) Analysis of flash flood disaster characteristics in China from 2011 to 2015. Nat Hazards, 90, 407–420, https://doi.org/10.1007/s11069-017-3052-7
- Herbei, M.V.; Bertici, R.; Sala, F. (2021) Geomatic Methods for management planning of protected areas. Case study: Paniova forest, Timis County, Romania. Sci papers – series E – Land reclamation Earth observation & surveying environmental engineering, 10, 301- 310.
- Houghton-Carr, H.A.; Print, C.R.; Fry, M.J.; Gadain, H.; Muchiri, P. (2011) An assessment of the surface water resources of the Juba-Shabelle basin in southern Somalia. Hydrol Sci J 56(5), 759–774. https://doi.org/10.1080/02626667.2011.585470
- Iosub, M.; Minea, I.; Chelariu, O.E.; Ursu, A. (2020) Assessment of flash flood susceptibility potential in Moldavian Plain (Romania). J Flash Flood Risk Manag, 13. https://doi.org/10.1111/jfr3.12588
- Kopecký, M.; Macek, M.; Wild, J. (2021) Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Sci Total Environ, 757, 143785. https://doi.org/10.1016/j.scitotenv.2020.143785
- Kourgialas, N.N.; Karatzas, G. (2011) Flood management and a GIS modelling method to assess flood-hazard areas— a case study. Hydrological Sciences Journal, 56(2):212–225, https://doi.org/10.1080/02626667.2011.555836
- Kourgialas, N.N.; Anyfanti, I.; Karatzas, G.P.; Dokou, Z. (2018) An integrated method for assessing drought prone areas–Water efficiency practices for a climate resilient Mediterranean agriculture. Sci Total Enviro., 625, 1290–1300, https://doi.org/10.1016/j.scitotenv.2018.01.051
- Kumar, R.; Kumar, M.; Tiwari, A.; Majid, S.I.; Bhadwal, S.; Sahu, N.; Avtar, R. (2023) Assessment and Mapping of Riverine Flood Susceptibility (RFS) in India through Coupled Multicriteria Decision Making Models and Geospatial Techniques. Water, 15, 3918. https://doi.org/10.3390/w15223918
- Kundzewicz, Z.W.; Pinskwar, I.; Brakenridge, G.R. (2014) Large floods in Europe, 1985–2009; Hydrol Sci J, 58(1), 1–7. https://doi.org/10.1080/02626667.2012.745082
- Kundzewicz, Z.W.; Su, B.; Wang, Y.; Wang, G.; Wang, G.; Huang, J.; Jiang, T. (2019) Flood risk in a range of spatial perspectives—From global to local scales. Nat Hazards Earth Syst Sci, 19, 1319–1328. https://doi.org/10.5194/nhess-19-1319-2019
- Liu, K.; Li, Z.; Yao, C.; Chen, J.; Zhang, K.; Saifullah, M. (2016) Coupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecasting. Int J Sediment Res, 31, 149–158. https://doi.org/10.1016/j.ijsrc.2016.02.002
- Liu, C.C.; Shieh, M.C.; Ke, M.S.; Wang, K.H. (2018) Flood Prevention and Emergency Response System Powered by Google Earth Engine. Remote Sens, 10, 1283,. https://doi.org/10.3390/rs10081283
- Magesh, N.S.; Chandrasekar, N.; Soundranayagam, J.P. (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front, 3(2),189–196. https://doi.org/10.1016/j.gsf.2011.10.007
- Magureanu, M.; Sfîrcoci, M.; Copacean, L.; Cojocariu, L. (2023) Monitoring the vegetation coverage of the grasslands in the Poiana Rusca Mountains using different remote sensing indices. PESD, 17, 189-199. https://doi.org/10.47743/pesd2023172014
- Mâsu, S.; Cojocariu, L.; Horablaga, N.M.; Bordean, D-M.; Borozan, A.B.; Cojocariu, A.; Pop, G.; Sandoiu, I.C. (2013) The effects of Triticum aestivum species for the phytoremediation of petroleum-contaminated soil, SGEM 2013 Conference Proceedings, 1, 963-970. https://doi.org/10.5593/SGEM2013/BE5.V1/S20.126
- Mâsu, S.; Cojocariu, L.; Grecu, E.; Morariu, F.; Bordean, D.M.; Horablaga, M.; Nita, L.; Nita S. (2018) Lolium Perenne - A Phytoremediation Option in Case of Total Petroleum Hydrocarbons Polluted Soils. Rev Chim, 69(5), 1110-1114, https://doi.org/10.37358/RC.18.5.6270
- Merz, B.; Blöschl, G.; Vorogushyn, S.; Dottori, F.; Aerts, J.C.J.H.; Bates, P.; Bertola, M.; Kemter, M.; Kreibich, H.; Lall, U.; Macdonald, E. (2021) Causes, impacts and patterns of disastrous river floods. Nat Rev Earth Environ, 2, 592–609. https://doi.org/10.1038/s43017-021-00195-3
- Meyer, V.; Becker, N.; Markantonis, V.; Schwarze, R.; Bergh, J.; Bouwer, L.; Bubeck, P.; Ciavola, P.; Genovese, E.; Green, C.; Hallegatte, S.; Kreibich, H.; Lequeux, Q.; Logar, I.; Papyrakis, E.; Pfurtscheller, C.; Poussin, J.; Przyluski, V.; Thieken, A. (2013) Assessing the costs of natural hazards—state of the art and knowledge gaps. Nat Hazards Earth Syst Sci 13(5), 1351–1373. https://doi.org/10.5194/nhess-13-1351-2013
- Mitra, R.; Das, J. (2022) A comparative assessment of flood susceptibility modelling of GIS- based TOPSIS, VIKOR, and EDAS techniques in the sub-himalayan foothills region of Eastern India. Environ Sci Pollut Res, 30, 16036–16067. https://doi.org/10.1007/s11356- 022-23168-5
- Nuissl, H.; Haase, D.; Lanzendorf, M.; Wittmer, H. (2009) Environmental impact assessment of urban land use transitions—a context-sensitive approach. Land Use Policy, 26(2), 414–424. https://doi.org/10.1016/j.landusepol.2008.05.006
- Osman, S.A.; Das, J. (2023) GIS-based flood risk assessment using multi-criteria decision analysis of Shebelle River Basin in southern Somalia. SN Appl Sci, 5, 134. https://doi.org/10.1007/s42452-023-05360-5
- Patrikaki, O.; Kazakis, N.; Kougias, I.; Patsialis, T.; Theodossiou, N.; Voudouris, K. (2018) Assessing flood hazard at river basin scale with an index-based approach: the case of Mouriki, Greece. Geosciences, 8(2), 50. https://doi.org/10.3390/geosciences8020050
- Pinos, J.; Quesada-Román, A. (2022) Flood Risk-Related Research Trends in Latin America and the Caribbean. Water, 14, 10. https://doi.org/10.3390/w14010010
- Popa, M.C.; Peptenatu, D.; Draghici, C.C.; Diaconu, D.C. (2019) Flood Hazard Mapping Using the Flood and Flash-Flood Potential Index in the Buzau River Catchment, Romania. Water, 11, 2116. https://doi.org/10.3390/w11102116
- Popescu, N.C.; Barbulescu, A. (2023) Flood Hazard Evaluation Using a Flood Potential Index. Water, 15, 3533. https://doi.org/10.3390/w15203533
- Posea, G.; Badea, L. (1984) România. Unitatile de relief (Regionarea geomorfologica), Ed. Stiintifica si Enciclopedica, Bucuresti.
- Pradhan, B. (2009) Flood susceptible mapping and risk area delineation using logistic regression, GIS and Remote sensing. J. Spat. Hydrol., 9, 1–18, https://scholarsarchive.byu.edu/josh/vol9/iss2/4/
- Purohit, J.; Rout, H.S. (2023) Impact of climate change on human health concerning climate-induced natural disaster: Evidence from an eastern Indian state. Clim Chang, 176, 1–22, https://doi.org/10.1007/s10584-023-03578-1
- Quesada-Román, A.; Ballesteros-Cánovas, J.A.; Granados-Bolaños, S.; Birkel, C.; Stoffel, M. (2022) Improving regional flood risk assessment using flood frequency and dendrogeomorphic analyses in mountain catchments impacted by tropical cyclones. Geomorphology, 396, 108000. https://doi.org/10.1016/j.geomorph.2021.108000
- Rahmati, O.; Pourghasemi, H.R.; Zeinivand, H. (2015) Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int, 31, 42–70. https://doi.org/10.1080/10106049.2015.1041559
- Rahmati, O.; Haghizadeh, A.; Stefanidis, S. (2016) Assessing the accuracy of GIS-based analytical hierarchy process for watershed prioritization; Gorganrood River Basin, Iran. Water resour manag, 30(3), 1131–50. https://doi.org/10.1080/10106049.2015.1041559
- Raj, R.; Yunus, A.P.; Pani, P.; Avtar, R. (2022) Towards evaluating gully erosion volume and erosion rates in the Chambal badlands, Central India. Land Degrad Dev, 33, 1495–1510. https://doi.org/10.1002/ldr.4250
- Rehman, S.; Hasan, M.S.U.; Rai, A.K.; Rahaman, M.H.; Avtar, R.; Sajjad, H. (2022) Integrated approach for spatial flood susceptibility assessment in Bhagirathi sub-basin, India using entropy information theory and geospatial technology. Risk Anal, 42, 2765–2780. https://doi.org/10.1111/risa.13887
- Roo, A.D.; Barredo, J.; Lavalle, C.; Bodis, K.; Bonk, R. (2007) Potential flood hazard and risk mapping at Pan-European scale; In Digital terrain modelling development and applications in a policy support environment; Peckham R.J., Jordan G., Eds.; Springer- Berlin: Heidelberg, Berlin, Germany; pp. 183–202.
- Romanescu, G.; Cimpianu, C.I.; Mihu-Pintilie, A.; Stoleriu, C.C. (2017) Historic flood events in NE Romania (post-1990). J Maps, 13(2), 787-798, https://doi.org/10.1080/17445647.2017.1383944
- Rusu, R. (2007) Organizarea spatiului geografic în Banat; Ed. Mirton: Timisoara, Romania.
- Saaty, T.L.; Tran, L.T. (2007) On the invalidity of fuzzifying numerical judgments in the Analytic Hierarchy Process. Math Comput Model, 46, 962–975, https://doi.org/10.1016/j.mcm.2007.03.022
- Said, N.; Ahmad, K.; Riegler, M.; Pogorelov, K.; Hassan, L.; Ahmad, N.; Conci, N. (2019) Natural disasters detection in social media and satellite imagery: A survey. Multimed. Tools Appl, 78, 31267–31302, https://doi.org/10.1007/s11042-019-07942-1
- Sahana, M.; Rehman, S.; Sajjad, H.; Hong, H. (2020) Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: A study of Sundarban Biosphere Reserve, India. Catena, 189, 104450. https://doi.org/10.1016/j.catena.2019.104450
- Santangelo, N.; Santo, A.; Di Crescenzo, G.; Foscari, G.; Liuzza, V.; Sciarrotta, S.; Scorpio, V. (2011) Flood susceptibility assessment in a highly urbanized alluvial fan: The case study of Sala Consilina (southern Italy). Nat Hazards Earth Syst Sci, 11, 2765–2780. https://nhess.copernicus.org/articles/11/2765/2011/
- Senanayake, D.; Dissanayake, B.; Mayadunna, W. (2016) An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci J, 7(1):115–124. https://doi.org/10.1016/j.gsf.2015.03.002
- Siahkamari, S.; Haghizadeh, A.; Zeinivand, H.; Tahmasebipour, N.; Rahmati, O. (2018) Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto Int, 33, 927–941, https://doi.org/10.1080/10106049.2017.1316780
- Simon, M.; Popescu, C.A.; Copacean, L.; Cojocariu, L. (2020) Complex model based on UAV technology for investigating pastoral space. PESD, 14(2), 139 – 150. https://doi.org/10.15551/pesd2020142011
- Simon, M.; Copacean, L.; Cojocariu, L. (2022) Techniques for identification, mapping and analysis of grasslands. Case study: Arad county. PESD, 16(2), 39-49. https://doi.org/10.47743/pesd2022162004
- Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. (2019) GIS- based MCDM-AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int, 35, 991–1017. https://doi.org/10.1080/10106049.2019.1566405
- Swain, K.C.; Singha, C.; Nayak, L. (2020) Flood Susceptibility Mapping through the GIS- AHP Technique Using the Cloud. ISPRS Int J Geo-Inf, 9, 720. https://doi.org/10.3390/ijgi9120720
- Tama?-Avram, M.; Luca, M.; Marcoie, N. (2022) Fast floods on the Trotu? river in the context of current climate change. PESD, 17(3), 44-45. https://doi.org/10.47743/pesd2022162016
- Tanga, X.; Lib, J.; Liuc, M.; Liud, W.; Hong, H. (2019) Flood susceptibility assessment based on a novel random Naïve Bayes method: A comparison between different factor discretization. Catena, 189, 104536. https://doi.org/10.1016/j.catena.2020.104536
- Tehrany, M.S.; Kumar, L. (2018) The application of a Dempster–Shafer-based evidential belief function in flood susceptibility mapping and comparison with frequency ratio and logistic regression methods. Environ Earth Sci, 77, 490. https://doi.org/10.1007/s12665- 018-7667-0
- Ushiyama, T.; Kwak, Y.; Ledvinka, O.; Iwami, Y.; Danhelka, J. (2017) Interdisciplinary approach for assessment of continental river flood risk: a case study of the Czech Republic. In EGU General Assembly Conference Abstracts, 19, 5737.
- Vegad, U.; Pokhrel, Y.; Mishra, V.; Ghosh, A.; Kar, S.K. (2018) Application of analytical hierarchy process (AHP) for flood risk assessment: A case study in Malda district of West Bengal, India. Hydrol. Earth Syst Sci Discuss, 94, 349–368. https://doi.org/10.1007/s11069-018-3392-y
- Wang, Y.; Fang, Z.; Hong, H.; Peng, L. (2020) Flood susceptibility mapping using convolutional neural network frameworks. J Hydrol, 582, 124482. https://doi.org/10.1016/j.jhydrol.2019.124482
- Yin, J.; Guo, S.; Liu, Z.; Yang, G.; Zhong, Y.; Liu, D. (2018) Uncertainty analysis of bivariate design flood estimation and its im-pacts on reservoir routing. Water Resour Manag, 32. 1795–1809, https://doi.org/10.1007/s11269-018-1904-x
- Youssef, A.; Pradhan, B.; Hassan, A. (2011) Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ Earth Sci, 62(3), 611–623, https://doi.org/10.1007/s12665-010-0551-1
- Zaharia, L.; Costache, R.; Pravalie, R. et al. (2015) Assessment and mapping of flood potential in the Slanic catchment in Romania. J Earth Syst Sci, 124, 1311–1324. https://doi.org/10.1007/s12040-015-0608-3
- . Zhao, G.; Pang, B.; Xu, Z.; Peng, D.; Xu, L. (2018) Assessment of urban flood susceptibility using semi-supervised machine learning model. Sci Total Environ, 659, 940–949. https://doi.org/10.1016/j.scitotenv.2018.12.217
-
|