References
- Adelsperger, S.R.; Ficklin, D.L.; Robeson, S.M. (2023) Tile drainage as a driver of streamflow flashiness in agricultural areas of the Midwest, USA. Hydrol. Process., 37(11), e15021. https://doi.org/10.1002/hyp.15021
- Almeida, R.M.; Hamilton, S.K.; Rosi, E.J.; Barros, N.; Doria, C.R.; Flecker, A.S.; ... & Roland, F. (2020) Hydropeaking operations of two run-of-river mega-dams alter downstream hydrology of the largest Amazon tributary. Front. Environ. Sci., 8, 120. https://doi.org/10.3389/fenvs.2020.00120
- Ariano, S.S.; Oswald, C.J. (2022) Broad scale assessment of key drivers of streamflow generation in urban and urbanizing rivers. Hydrol. Process., 36, e14579. https://doi.org/10.1002/hyp.14579
- Baker, D.B.; Richards, R.P.; Loftus, T.T.; & Kramer, J.W. (2004) A new flashiness index: Characteristics and applications to midwestern rivers and streams. JAWRA, 40(2), 503- 522. https://doi.org/10.1111/j.1752-1688.2004.tb01046.x
- Bevelhimer, M.S.; McManamay, R.A.; O'Connor, B. (2015) Characterizing sub-daily flow regimes: Implications of hydrologic resolution on ecohydrology studies. River Res. Appl., 31(7). 867-879. https://doi.org/10.1002/rra.2781
- Booth, D.B.; Konrad, C.P. (2017) Hydrologic metrics for status-and-trends monitoring in urban and urbanizing watersheds. Hydrol. Process., 31(25), 4507- 4519.https://doi.org/10.1002/hyp.11369
- Chapman, W.A.L.; Finnegan, N.J. (2024) The signature of climate in fluvial suspended sediment records. J. Geophys. Res. Earth Surf., 129(1), e2023JF007429. https://doi.org/10.1029/2023JF007429
- Chang, J.; Zhang, H.; Wang, Y.; Zhu, Y. (2016) Assessing the impact of climate variability and human activities on streamflow variation. Hydrol Earth Syst Sci., 20(4), 1547-1560. https://doi.org/10.5194/hess-20-1547-2016
- Chen, X.; Jiang, L.; Luo, Y.; Liu, J. (2023) A global streamflow indices time series dataset for large-sample hydrological analyses on streamflow regime (until 2022). Earth Syst. Sci. Data, 15(10), 4463–4479, https://doi.org/10.5194/essd-15-4463-2023
- Chescheir, G.M.; Skaggs, R.W.; Amatya, D.M. (2009) Quantifying the hydrologic impacts of afforestation in Uruguay: a paired watershed study. In Proceedings of the XIII World Forestry Congress, Buenos Aires, Argentina, 18–23 October 2009, pp. 18-23. Available at: https://www.srs.fs.usda.gov/pubs/ja/2009/ja_2009_amatya_001.pdf
- Collins, M.J.; Snyder, N.P.; Boardman, G.; Banks, W.S.; Andrews, M.; Baker, M.E.; ... & Wilcock, P. (2017) Channel response to sediment release: Insights from a paired analysis of dam removal. Earth Surf. Process. Landf., 42(11), 1636-1651. https://doi.org/10.1002/esp.4108
- Cui, T.; Tian, F.; Yang, T.; Wen, J.; Khan, M.Y.A. (2020) Development of a comprehensive framework for assessing the impacts of climate change and dam construction on flow regimes. J. Hydrol., 590, 125358. https://doi.org/10.1016/j.jhydrol.2020.125358
- Das, P.; Dutta, S. (2011) A trend analysis study on the flashiness of floods of hilly headwater catchments in the Brahmaputra Basin. Int J Earth Sci Eng, 4(06), 298-300.
- De Girolamo, A.M.; Porto, A.L.; Abouabdillah, A.; De Luca, D.; Santese, G. (2008) Evaluation of flow regime in Mediterranean streams using flashiness index. In 21st Century Watershed Technology: Improving Water Quality and Environment Conference Proceedings, 29 March-3 April 2008, Concepcion, Chile (p. 55). American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.24316
- Dow, C.L. (2007) Assessing regional land-use/cover influences on New Jersey Pinelands streamflow through hydrograph analysis. Hydrol. Process., 21(2), 185-197. https://doi.org/10.1002/hyp.6232
- Dumitriu, D. (2014) Source area lithological control on sediment delivery ratio in Trotus drainage basin (Eastern Carpathians). Geogr Fis Din Quat, 37, 91-100. https://doi.org/10.4461/GFDQ.2014.37.08
- Dumitriu, D. (2016) Geomorphic effectiveness of floods on Trotus River channel (Romania) between 2000 and 2012. Carpath. J Earth Env, 11, 181-196.
- Dumitriu, D. (2018) Sub-bankfull flow frequency versus magnitude of flood events in outlining effective discharges. Case Study: Trotu? River (Romania). Water, 10, 1292. https://doi.org/10.3390/w10101292
- Dumitriu, D. (2020) Sediment flux during flood events along the Trotu? River channel: hydrogeomorphological approach. J Soils Sediments, 20, 4083–4100. https://doi.org/10.1007/s11368-020-02763-4.
- Dumitriu, D. (2022) Causes of spatio-temporal variations in the flood event efficiency index. PESD, 16(1), 273-281.https://pesd.ro/16.1.2022/pesd2022161020
- Dumitriu, D. (2023) Increasing flood magnitude, an effect of climate change or natural climate variability? PESD, 17(2), 5-16. https://doi.org/10.47743/pesd2023172001
- Fiala, R.; Podhrázská, J.; Konecná, J.; Kucera, J.; Karásek, P.; Zahradnícek, P.; Štepánek, P. (2020) Changes in a river's regime of a watercourse after a small water reservoir construction. Soil Water Res., 15(1), 55–65. https://doi.org/10.17221/23/2019-SWR
- Fongers, D.; Day R.; Rathbun, J. (2012) Application of the Richards-Baker Flashiness Index to Gaged Michigan Rivers and Streams. Michigan Department of Environmental Quality. Water Resources Division, 120 p.
- Gannon, J.P.; Kelleher, C.; Zimmer, M. (2022) Controls on watershed flashiness across the continental US. J. Hydrol., 609, 127713. https://doi.org/10.1016/j.jhydrol.2022.127713
- George, R.; McManamay, R.; Perry, D.; Sabo, J.; Ruddell, B.L. (2021) Indicators of hydro- ecological alteration for the rivers of the United States. Ecol. Indic., 120, 106908. https://doi.org/10.1016/j.ecolind.2020.106908
- Gilja, G.; Kuspilic, N.; Lacko, M.; Romic, D. (2023) Reconstruction of recharge and discharge pattern in the polder drainage canal network. Hydrology, 10, 60. https://doi.org/10.3390/hydrology10030060
- Holko, L.; Parajka, J.; Kostka, Z.; Škoda, P.; Blöschl, G. (2011) Flashiness of mountain streams in Slovakia and Austria. J. Hydrol., 405(3-4), 392-401. https://doi.org/10.1016/j.jhydrol.2011.05.038
- Isik, S.; Kalin, L.; Schoonover, J.E.; Srivastava, P.; Lockaby, B.G. (2013). Modeling effects of changing land use/cover on daily streamflow: an artificial neural network and curve number based hybrid approach. J. Hydrol., 485, 103-112. https://doi.org/10.1016/j.jhydrol.2012.08.032
- Jayakaran, A.D.; Smoot, Z.T.; Park, D.M.; Hitchcock, D.R. (2016) Relating stream function and land cover in the Middle Pee Dee River Basin, SC. J. Hydrol.: Reg. Stud., 5, 261-275. http://dx.doi.org/10.1016/j.ejrh.2015.12.064
- Johnson, B.G.; Morris, C.S.; Mase, H.L.; Whitehouse, P.S.; Paradise, C.J. (2022) Seasonal flashiness and high frequency discharge events in headwater streams in the North Carolina Piedmont (United States). Hydrol. Process., 36(3), e14550. https://doi.org/10.1002/hyp.14550
- Kayembe, A.; Mitchell, C.P. (2018) Determination of subcatchment and watershed boundaries in a complex and highly urbanized landscape. Hydrol. Process., 32(18), 2845- 2855. https://doi.org/10.1002/hyp.13229
- Kim, J.; Ale, S.; Teague, W.R.; Wang, T. (2022) Evaluating hydrological components and streamflow characteristics under conventional and adaptive multi-paddock grazing management. River Res. Appl., 38(4), 776-787. https://doi.org/10.1002/rra.3948
- Kotei, R.; Kyei-Baffour, N.; Ofori, E.; Agyare, W. (2013) Changes in the Sumampa streamflow flashiness in the forest-savannah transitional zone, Mampong-Ashant, Ghana 1985-2009. ARPN J. Eng. Appl. Sci, 8(9), 770-778. Available at: http://www.arpnjournals.org/jes/research_papers/rp_2016/jes_1216_57.pdf
- Královec, V.; Kliment, Z.; Matoušková, M. (2016) Evaluation of runoff response on the basis of a comparative paired research in mountain catchments with the different land use. Case study of the Blanice River, Czechia. Geografie, 121(2), 209–234. Available at: http://hdl.handle.net/20.500.11956/168703
- Kubiak-Wójcicka, K. (2018) Flow characteristics of the Vistula river at the Tczew gauging station in 1951–2010 based on flashiness Index. In 4rd International Conference Water Resources and wetlands Conference proceedings, Gastescu P. & Bretcan P. (Eds.), Tulcea, Romania, pp. 119-129. https://www.limnology.ro/wrw2018/Proceedings/16_Kubiak.pdf
- Kubiak-Wójcicka, K. (2019) Long-term variability of runoff of Vistula River in 1951-2015. In Air and Water – Components of the Environment, Conference Proceedings, Cluj-Napoca, Romania, pp. 109-120. https://doi.org/10.24193/AWC2019_11
- McDonald, J.M.; Leigh, D.S.; Jackson, C.R. (2018) Watershed-to continental-scale influences on winter stormflow in the Southern Blue Ridge Mountains. J. Hydrol., 563, 643-656. https://doi.org/10.1016/j.jhydrol.2018.06.013
- McPhillips, L.E.; Earl, S.R.; Hale, R.L.; Grimm, N.B. (2019) Urbanization in arid central Arizona watersheds results in decreased stream flashiness. Water Resour. Res., 55(11), 9436-9453. https://doi.org/10.1029/2019WR025835
- Mogollón, B.; Frimpong, E.A.; Hoegh, A.B.; Angermeier, P.L. (2016) Recent changes in stream flashiness and flooding, and effects of flood management in North Carolina and Virginia. JAWRA, 52(3), 561-577. https://doi.org/10.1111/1752-1688.12408
- Nie, N.; Zhang, W.; Liu, M.; Chen, H.; Zhao, D. (2021) Separating the impacts of climate variability, land-use change and large reservoir operations on streamflow in the Yangtze River basin, China, using a hydrological modeling approach. Int. J. Digit. Earth, 14(2), 231-249. https://doi.org/10.1080/17538947.2020.1812740
- Oueslati, O.; De Girolamo, A.M.; Abouabdillah, A.; Kjeldsen, T.R.; Lo Porto, A. (2015) Classifying the flow regimes of Mediterranean streams using multivariate analysis. Hydrol. Process., 29(22), 4666-4682. https://doi.org/10.1002/hyp.10530
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D., Sparks, R.E.; Stromberg, J.C. (1997) The natural flow regime. BioScience, 47(11), 769-784. https://doi.org/10.2307/1313099
- Pratama, G.; Kusratmoko, E. (2018) Flashiness index of several rivers in the Citarum basin, west Java. IOP Conf. Ser. Earth Environ. Sci. 145, 012107. https://10.1088/1755- 1315/145/1/012107
- Procopio, N.A. (2010) Hydrologic and morphologic variability of streams with different cranberry agriculture histories, Southern New Jersey, United States. JAWRA, 46(3), 527- 540. https://doi.org/10.1111/j.1752-1688.2010.00432.x
- Roodsari, B.K.; Chandler, D.G. (2017) Distribution of surface imperviousness in small urban catchments predicts runoff peak flows and stream flashiness. Hydrol. Process., 31(17), 2990-3002. https://doi.org/10.1002/hyp.11230
- osburg, T.T.; Nelson, P.A.; & Bledsoe, B.P. (2017) Effects of urbanization on flow duration and stream flashiness: a case study of Puget Sound streams, western Washington, USA. JAWRA, 53(2), 493-507. https://doi.org/10.1111/1752-1688.12511
- Saxe, S.; Hogue, T.S.; Hay, L. (2018) Characterization and evaluation of controls on post- fire streamflow response across western US watersheds. Hydrol. Earth Syst. Sci., 22, 1221–1237. https://doi.org/10.5194/hess-22-1221-2018
- Shah, S.A.; Yoo, J.; Kim, M.J.; Kim, T.W. (2022) Streamflow response to climate variablity and anthropogenic activities at a watershed scale. In 18th Annual Meeting of the Asia Oceania Geosciences Society: Proceedings of the 18th Annual Meeting of the Asia Oceania Geosciences Society (AOGS 2021), pp. 123-125. https://doi.org/10.1142/9789811260100_0042
- Sharma, P.J.; Patel, P.L.; Jothiprakash, V. (2019) Impact of rainfall variability and anthropogenic activities on streamflow changes and water stress conditions across Tapi Basin in India. Sci. Total Environ., 687, 885-897. https://doi.org/10.1016/j.scitotenv.2019.06.097
- Spurgeon, J.J.; Pegg, M.A.; Hamel, M.J. (2016) Multi-scale approach to hydrological classification provides insight to flow structure in altered river system. River Res. Appl., 32(9), 1841-1852. https://doi.org/10.1002/rra.3041
- Tekleab, S.; Mohamed, Y.; Uhlenbrook, S.; Wenninger, J.J.H.P. (2014) Hydrologic responses to land cover change: the case of Jedeb mesoscale catchment, Abay/Upper Blue Nile basin, Ethiopia. Hydrol. Process., 28(20), 5149-5161. https://doi.org/10.1002/hyp.9998
- ten Veldhuis, M.C.; Schleiss, M. (2017) Statistical analysis of hydrological response in urbanising catchments based on adaptive sampling using inter-amount times. Hydrol. Earth Syst. Sci., 21(4), 1991-2013. https://doi.org/10.5194/hess-21-1991-2017
- Wu, J.Y.; Thompson, J.R.; Kolka, R.K.; Franz, K.J.; Stewart, T.W. (2013) Using the Storm Water Management Model to predict urban headwater stream hydrological response to climate and land cover change. Hydrol. Earth Syst. Sci., 17, 4743–4758. https://doi.org/10.5194/hess-17-4743-2013
- Zeiringer, B.; Seliger, C.; Greimel, F.; Schmutz, S. (2018) River hydrology, flow alteration, and environmental flow. In Riverine Ecosystem Management – Science for Governing Towards a Sustainable Future, Schmutz, S; Sendzimir, J. (Eds.)., Springer, Switzerland, 8, pp. 67–89. https://doi.org/10.1007/978-3-319-73250-3
- Zimmerman, J.K.; Letcher, B.H.; Nislow, K.H.; Lutz, K.A.; Magilligan, F.J. (2010) Determining the effects of dams on subdaily variation in river flows at a whole-basin scale. River Res. Appl., 26(10), 1246-1260. https://doi.org/10.1002/rra.1324
-
|