References
- Abshaev, M.T. (1989) On a new method of influence on hail processes. Trudy VGI, 72, 14–28.
- Abshaev, M.T.; Abshaev, A.M.; Malkarova, A.M. (2023) Results of 65-Years Project of Hail Suppression in Russian Federation. In Physics of the Atmosphere, Climatology and Environmental Monitoring; Zakinyan, R., Zakinyan, A. Eds.; Springer Proceedings in Earth and Environmental Sciences. https://doi.org/10.1007/978-3-031-19012-4_1
- Abshaev, A.M.; Abshaev, M.T.; Sadikhov, Y.A. (2003) On the propagation of artificial aerosol in powerful convective clouds (in Russian), Meteorology and Hydrology, 9, 28–35.
- Abshaev A.M.; Abshaev M.T.; Malkarova A.M.; Barekova M.V. (2014) Guidelines for organizing and carrying out anti-hail works (in Russian); Print house: Nalchik, Russia; p 500.
- Abshaev, M.T.; Abshaev, A.M.; Malkarova, A.M.; Tsikanov, K.A. (2022) Hail Suppression to Protect Crops in the North Caucasus. Russ Meteorol Hydrol, 47, 487–498. https://doi.org/10.3103/S1068373922070019
- Abshaev, M.T.; Abshaev, A.M.; Malkarova, A.M.; Zharashuev, M.V. (2010) Automated radar identification, measurement of parameters, and classification of convective cells for hail protection and storm warning. Russ Meteorol Hydrol, 35, 182–189, https://doi.org/10.3103/S1068373910030040
- Abshaev, A.M.; Abshaev, M.T.; A Adzhiev, K.; Gekkieva, J.M.; A Sinkevich, A.; Mikhailovskii, Y.P. (2021) On the influence of glaciogenic seeding on the radar characteristics of hail clouds. IOP Conf Series Earth Environ Sci, 840, 012025, https://doi.org/10.1088/1755-1315/840/1/012025
- Abshaev, A.M.; Sadykhov, Y.A.; Malkarova, A.M. (2011) On the choice of diffusion schemes in numerical simulation of crystallizing aerosol propagation in the cloud medium. Russ. Meteorol. Hydrol. 36, 737–746 https://doi.org/10.3103/S1068373911110057
- Allen, M.; Poggiali, D.; Whitaker, K. et al. (2021) Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Res, 4, 63. https://doi.org/10.12688/wellcomeopenres.15191.2
- Amburn, S.A.; Wolf, P. L. (1997) VIL Density as a Hail Indicator. Wea Forecasting, 12, 473–478, https://doi.org/10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2
- Apostol, L.; Machidon, O.M. (2011) Considerations on the hail regime in Moldavia between the Siret and Prut rivers, Air and Water - Components of the Environment Conference Proceeding, 2011, 45-52.
- Axinte, A.D. (2019) The hail falls at the Moldavia level and the importance of the hail suppression unit "Moldova 1" Ia?i. Present Environment and Sustainable Development, 13, (2), 129–140. https://doi.org/10.15551/pesd2019132009
- Burcea, S.; Cica, R.; Bojariu, R. (2016) Hail Climatology and Trends in Romania: 1961–2014. Mon Wea Rev, 144, 4289–4299, https://doi.org/10.1175/MWR-D-16-0126.1
- Cica, R.; Burcea, S.; Bojariu, R. (2015) Assessment of severe hailstorms and hail risk using weather radar data, Met Apps, 22, 746-753. https://doi.org/10.1002/met.1512
- Dennis, A.S.; Koscielski, A.; Cain, D.E.; Hirsch, J.H.; Smith Jr., P.L. (1975) Analysis of radar observations of a randomized cloud seeding experiment. J Appl Meteorol, 14, 897–908. https://doi.org/10.1175/1520-0450(1975)014<0897:AOROOA>2.0.CO;2
- Dessens, J.; Berthet, C.; Sanchez, J.L.; Hermida, L.; Merino, A. (2016) Hail prevention by ground-based silver iodide generators: Results of historical and modern field projects. Atmos Res, 170, 98-111. https://doi.org/10.1016/j.atmosres.2015.11.008
- European Commission - EC (2023) Catalogue for agricultural production statistics in Europe. Available online at: https://ec.europa.eu/ (accessed on 27 July 2023)
- Gheorghiosu, E.; Bordo?, S.; Enache, V.; Ion, D. (2020) Conformity assessment of anti-hail rocket RAG-96.00 with security requirements. MATEC Web of Conferences 2020, 305. https://doi.org/10.1051/matecconf/202030500020
- Guo, X.; Fu, D.; Li, X. et al. (2015) Advances in cloud physics and weather modification in China. Adv Atmos Sci, 32, 230–249. https://doi.org/10.1007/s00376-014-0006-9
- Hoeppe, P. (2016) Trends in weather related disasters – consequences for insurers and society. Weather and Climate Extremes, 11, 70–79. https://doi.org/10.1016/j.wace.2015.10.002
- Hohl, R.; Schiesser, H.H.; Aller, D. (2002a) Hailfall: the relationship between radar-derived hail kinetic energy and hail damage to buildings. Atmos Res, 63, 177–207, https://doi.org/10.1016/S0169-8095(02)00059-5
- Hohl, R.; Schiesser, H.H.; Knepper, I. (2002b) The use of weather radars to estimate hail damage to automobiles: an exploratory study in Switzerland. Atmos Res, 61(3), 215–238, https://doi.org/10.1016/S0169-8095(01)00134-X
- Huston, M.W.; Detwiler, A.G.; Kopp, F.J.; Stith, J.L. (1991) Observations and model simulations of transport and precipitation development in a seeded cumulus congestus cloud. J Appl Meteorol, 30 (10), 1389–1406, https://doi.org/10.1175/1520-0450(1991)030<1389:OAMSOT>2.0.CO;2
- Istrate, V.; Axinte, A.D.; Apostol, L.; Florea, D.; Machidon, O.M. (2016) The Efficacity of Hail Supression in Ia?i County (Romania) Case Study 09 July 2015. 16th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings, Albena, Bulgaria, 2, 631–38. https://doi.org/10.5593/SGEM2016/B42/S19.081
- Istrate, V.; Dobri, R.V.; Barcacianu, F.; Ciobanu, R.A.; Apostol, L. (2017) A ten years hail climatology based on ESWD hail reports in Romania, 2007-2016. Geographia Technica, 12, 2, 110-118. https://10.21163/GT_2017.122.10
- Istrate, V.; Jitariu V.; Ichim P.; Machidon O.M.; Apostol, L. (2021) Hailstorm risk assessment for crop areas in Moldova Region (Romania). Present Environment and Sustainable Development, 15 (2), 55-67. https://doi.org/10.15551/pesd2021152005
- Istrate, V.; Ursu, A.; Dobri, R.V.; Axinte, A.D.; Stoica, D. (2019) Hail suppression system in Romania and its relation with land cover. Conference: 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings, Albena, Bulgaria, 2, 1071-1079. https://10.5593/sgem2019/2.2
- JASP Team (2023) JASP software (Version 0.17.3) [Computer software].
- Krauss, T.W.; Santos, J.R. (2004) Exploratory analysis of the effect of hail suppression operations on precipitation in Alberta. Atm Res, 71, 1–2, 35-50, https://doi.org/10.1016/j.atmosres.2004.03.004
- Kunz, M.; Puskeiler, M. (2010) High-resolution assessment of the hail hazard over complex terrain from radar and insurance data. Meteorol Z, 19, 427–439, https://doi.org/10.1127/0941-2948/2010/0452
- Machidon, O. (2006) The necessity and opportunity of the protection from hailstorms in the departments of Vrancea and Galati. L Sem Geografic “Dimitrie Cantemir”, 7, 117-129.
- Maitra, S.S. Methods for Evaluation of the Alberta Hail Suppression Project Using Radar Observations, University of North Dakota, Dissertations Thesis, Grand Forks, December 2021. Available online at: https://commons.und.edu/theses/4173.
- Makitov, V. (2007) Radar Measurements of Integral Parameters of Hailstorms Used on Hail Suppression Projects. Atmos Res, 83, 2–4, 380–388, https://doi.org/10.1016/j.atmosres.2005.09.016
- Mather, G.K.; Treddenick, D.; Parsons, R. (1976) An observed relationship between the height of the 45-dBZ contours in storm profile. J Appl Meteor Climatol, 15, 1336–1340, https://doi.org/10.1175/1520-0450(1976)015<1336:AORBTH>2.0.CO;2
- Mihailescu, C.; Radulescu, M. (2021) Increasing the efficacity of an anti-hail rocket. International Journal of Applied Physics, 7, 17-23.
- Pocakal, D.; Štalec, J. (2003) Statistical analysis of hail characteristics in the hail-protected western part of Croatia using data from hail suppression stations. Atmos Res, 67–68, 533-540. https://doi.org/10.1016/S0169-8095(03)00071-1
- Pirani, F.J.; Najafi, M.F.; Joe, P.; Brimelow, J.; McBean, G.; Rahimian, M.; Stewart, R.; Kovacs, P. (2023) A ten-year statistical radar analysis of an operational hail suppression program in Alberta. Atmos Res, 107035, https://doi.org/10.1016/j.atmosres.2023.107035
- Potapov, E.I.; Garaba, I.A. (2016) Technological features of hail suppression activities in the Republic of Moldova. Russ Meteorol Hydrol, 41, 268–275 https://doi.org/10.3103/S1068373916040063
- Rivera, J.A; Otero, F.; Naranjo Tamayo, E.; Silva, M. (2020) Sixty years of hail suppression activities in Mendoza, Argentina: uncertainties, gaps in knowledge and future perspectives. Front Environ Sci, 8, 45. https://doi.org/10.3389/fenvs.2020.00045
- Sanchez, J.L.; Merino, A.; Melcón, P.; et al. (2017) Are meteorological conditions favouring hail precipitation change in Southern Europe? Analysis of the period 1948–2015. Atmos Res, 198, 1–10. https://doi.org/10.1016/j.atmosres.2017.08.003
- Simeonov, P. (1996) An Overview of Crop Hail Damage and Evaluation of Hail Suppression Efficiency in Bulgaria. J Appl Meteor Climatol, 35, 1574–1581, https://doi.org/10.1175/1520-0450(1996)035<1574:AOOCHD>2.0.CO;2
- Sulakvelidze, G.K.; Kiziriya, B.I.; Tsykunov, V.V. Progress of Hail Suppression Work in the USSR. In Weather and Climate Modification; Hess, W.N., Ed.; Wiley: Hoboken, NJ, USA, 1974; pp. 410–431.
- Sulea, C.; Manolea, G.; Selisteanu, D. (2013) Informational decision support for risk reduction related to hailstorm in Oltenia region: Romania. Nat Hazards, 66, 835–850 https://doi.org/10.1007/s11069-012-0529-2
- Tang, B.H.; Gensini, V.A.; Homeyer, C.R. (2019) Trends in United States large hail environments and observations. NPJ Climate and Atmospheric Science 2, 45. https://doi.org/10.1038/s41612-019-0103-7
- Visser, P.; van Heerden, J. (2000) Comparisons of hail kinetic energy derived from radar reflectivity with crop damage reports over the eastern Free State. Water Research Comission, 26, 91–96.
- Waldvogel, A.; Federer, B.; Schmid, W.; Mezeix, J. F. (1978b) The kinetic energy of hailfalls. Part II: Radar and hailpads. J Appl Meteor, 17, 1680–1693, https://doi.org/10.1175/1520-0450(1978)017<1680:TKEOHP>2.0.CO;2
- Waldvogel, A.; Schmid, W.; Federer, B. (1978a) The kinetic energy of hailfalls. Part I: Hailstone spectra, J Appl Meteor, 17, 515–520 https://doi.org/10.1175/1520-0450(1978)017<0515:TKEOHP>2.0.CO;2
- Wan, X.; Zhou, S.; Fan, Z. (2023) Comprehensive Efficiency Evaluation of Aircraft Artificial Cloud Seeding in Hunan Province, China, Based on Numerical Simulation Catalytic Method. Atmosphere, 14, 1187. https://doi.org/10.3390/atmos14071187
- . Witt, A.; Eilts, M.D.; Stumpf, G.J.; Johnson, J.T.; Mitchell, E.D.W.; Thomas, K.W. (1992) An Enhanced Hail Detection Algorithm for the WSR-88D. Weather and Forecasting, 13, 286-303, http://dx.doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2
-
|