References
- Bell, L.W., Moore, A.D., (2012). Integrated crop-livestock systems in Australian agriculture: Trends, drivers and implications. Agricultural Systems, 111 (1): 1-12. doi.org/10.1016/j.agsy.2012.04.003
- Broom, D.M., Galindo, F.M., Murgueitio, E., (2013), Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proceedings of the Royal Society B: Biological Sciences, 280 (1771): 2013-2025, doi: https://doi.org/10.1098/rspb.2013.2025
- Capolupo, Alessandra, Kooistra, L., Berendonk, Clara, Boccia, L., Suomalainen, J., (2015), Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images, A Comparison of Statistical Approaches. ISPRS International Journal of Geo-Information, 4 (4): 2792-2820. doi.org/10.3390/ijgi4042792
- Carvalho, P.C.F., Moraes, A., Pontes, L.S., Anghinoni, I., Sulk, R.M., Batello, C., (2014), Definitions and terminologies for Integrated Crop-Livestock System, Revista Ciencia Agronomica, 45 (5): 1040-1046, https://doi.org/10.1590/S1806-66902014000500020
- Chará, J., Reyes, E., Peri, P., Otte, J., Arce, E., Schneider, F., (2019), Silvopastoral Systems and their Contribution to Improved Resource Use and Sustainable Developmen Goals: Evidence from Latin America. FAO, CIPAV and Agri Benchmark, Cali, 60 pp.
- Cojocariu, Luminița, Săndoiu, I.C., Horablaga, N.M., Borozan, Aurica Breica, Micu, Lavinia Madalina, Bordean, Despina-Maria, (2014), Systems for increasing the efficiency of submountain and mountain areas in Banat Mountains, Agrobuletin AGIR, Anul VI, 1-2 (18): 12-19
- Cohen, O., Cartier, A., Ruz, Marie-Hélène., (2018), Mapping Coastal Dunes Morphology and Habitats Evolution Using UAV and Ultra-High Spatial Resolution Photogrammetry, International Workshop „Management of coastal dunes and sandy beaches”, Dunkirk, 12-14 june 2018
- Forsmoo, J., Anderson, K., Macleod, C.J.A., Wilkinson, M.E., Brazier, R., (2018), Drone-based structure-from-motion photogrammetry captures grassland sward height variability, Journal of Applied Ecolology, 55 (6): 2587-2599. https://doi.org/10.1111/1365-2664.13148
- Herrmann, I., Bdolach, E., Montekyo, Y., Rachmilevitch, S., Townsend, P.A., Karnieli, A., (2020), Assessment of maize yield and phenology by drone-mounted superspectral camera, Precision Agriculture, 21, 51–76. https://doi.org/10.1007/s11119-019-09659-5
- Hoancea, Lia, Copacean, Loredana, Bordean, Despina Maria, Cojocariu, Luminiţa, (2017), Analysis of pasture vegetation in the west of Romania in correlation with pastoral traditions, International Multidisciplinary Scientific GeoConference: SGEM; Sofia, Conference Proceedings, 17 (52): 33-40, https://doi.org/10.5593/sgem2017/52
- Honkavaara, E., Kaivosoja, J., Mäkynen, J., Pellikka, I., Pesonen, L., Saari, H., Salo, H., Hakala, T., Marklelin, L., Rosnell, T., (2012), Hyperspectral reflectance signatures and point clouds for precision agriculture by light weight UAV imaging system. In XXII ISPRS Congress 2012: Technical Commission VII, Melbourne, Australia, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-7: 353-358. https://doi.org/10.5194/isprsannals-I-7-353-2012
- Horablaga, M.N., Cojocariu, Luminiţa, (2006), Managementul pajiştilor şi al culturilor furajere, Editura Eurostampa, Timişoara.
- Jose, S., (2009), Agroforestry for ecosystem services and environmental benefits: an overview, Agroforest Systems, 76: 1–10. https://doi.org/10.1007/s10457-009-9229-7
- Koenig, Kristina, Höfle, B., Hämmerle, M., Jarmer, T., Siegmann, B., Lilienthal, H., (2015), Comparative classification analysis of post-harvest growth detection from terrestrial LiDAR point clouds in precision agriculture, ISPRS Journal of Photogrammetry and Remote Sensing, 104: 112-125. doi.org/10.1016/j.isprsjprs.2015.03.003
- Mahajan, U., Bundel, B.R., (2017), Drones for Normalized Difference Vegetation Index (NDVI), to Estimate Crop Health for Precision Agriculture: A Cheaper Alternative for Spatial Satellite Sensors, In Proceedings of the International Conference on Innovative Research in Agriculture, Food Science, Forestry, Horticulture, Aquaculture, Animal Sciences, Biodiversity, Ecological Sciences and Climate Change (AFHABEC-2016). Jawaharlal Nehru University, New Delhi, India: 28-41 [link]
- de Moraes, A., de F. Carvalho, P.C., Anghinoni, I., Lustosa, S.B.C., de A. Costa, S.E.V.G., Kunrath, T.R., (2014), Integrated crop-livestock systems in the Brazilian subtropics, European Journal of Agronomy, 57: 4-9. https://doi.org/10.1016/j.eja.2013.10.004
- Peri, P.L., Banegas, Natalia, Gasparri. I., Carranza, C.H., Rossner, B., Pastur, G.M., Cavallero, Laura, López, D.R., Loto, D., Fernández, P., Powel, Priscila, Ledesma, Marcela, Pedraza, R., Albanesi, Ada, Bahamonde, H., Eclesia, Roxana Paola, Piñeiro, G., (2017), Carbon Sequestration in Temperate Silvopastoral Systems, Argentina, In Montagnini, F. (Ed.) Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty, Chapter 19, pp 453–478. Advances in Agroforestry 12, Springer International Publishing. https://doi.org/10.1007/978-3-319-69371-2_19
- Puri, V., Nayyar, A., Raja, L., (2017), Agriculture drones: A modern breakthrough in precision agriculture, Journal of Statistics and Management Systems, 20 (4): 507-518. doi.org/10.1080/09720510.2017.1395171
- Rain, P., Bostan, C., Copăcean, Loredana, Hoancea, Lia, Cojocariu, Luminiţa, (2019), Management of grasslands for the conservation of the bird species Lanius Minor and Falco Vespertinus in accordance with the Common Agricultural Policy, in Romania. Case study, Research Journal of Agricultural Science, 51 (2): 45-5, [link]
- Raparelli, Elisabetta, Bajocco, Sofia, (2019), A bibliometric analysis on the use of unmanned aerial vehicles in agricultural and forestry studies, International Journal of Remote Sensing, 40 (24): 9070-9083. doi.org/10.1080/01431161.2019.1569793
- Roese, A.D., Junior, P.J.R., Porfírio-da-Silva, V., May De Mio, Louise Larissa, (2018), Agrosilvopastoral system enhances suppressiveness to soybean damping-off caused by Rhizoctoniasolani and alters Fusarium and Trichoderma population density, Acta Scientiarum. Agronomy, 40, e35075. doi.org/10.4025/actasciagron.v40i1.35075
- Rokhmana, C.A. (2015), The Potential of UAV-based Remote Sensing for Supporting Precision Agriculture in Indonesia, Procedia Environmental Sciences 24: 245–253. https://doi:10.1016/j.proenv.2015.03.032
- Sanches, G.M., Duft, D.G., Kölln, O.T., Dos Santos Luciano, A.C., Quassi De Castro, S.G., Okuno, F.M., Junqueira Franco, H.C., (2018), The Potential for RGB Images Obtained Using Unmanned Aerial Vehicle to Assess and Predict Yield in Sugarcane Fields, International Journal of Remote Sensing 39 (15–16): 5402–5414. https://doi:10.1080/01431161.2018.1448484
- Shamshiri, R.R., Weltzien, Cornelia, Hameed, I.A., Yule, I.J., Grift, T.E., Balasundram, S.K., Pitonakova, Lenka, Ahmad, D., Chowdhary, G., (2018), Research and Development in Agricultural Robotics: A Perspective of Digital Farming, International Journal of Agricultural and Biological Engineering 11 (4): 1–14, doi: https://doi.org/10.25165/j.ijabe.20181104.4278
- Simon, M., Copăcean, Loredana, Cojocariu, Luminiţa, (2018), U.A.V. Technology for the detection of spatio-temporal changes of the useful area for forage of grassland, Research Journal of Agricultural Science, 50 (4): 332-341, [link]
- Sona, Giovanna, Passonia, D., Pinto, L., Pagliari, Diana, Masseroni, D., Ortuani, Bianca, Facchi, Arianna, (2016), UAV Multispectral Survey to Map Soil and Crop for Precision Farming Applications, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41: 1023-1029. https://doi.org/10.5194/isprs-archives-XLI-B1-1023-2016
- Stafford, J.V., (2002), Implementing Precision Agriculture in the 21st Century, Journal of Agricultural Engineering Research 76 (3): 267–275. doi:10.1006/jaer.2000.057
- Sun, Y., Yi, S., Hou, F., (2018), Unmanned aerial vehicle methods makes species composition monitoring easier ingrasslands, Ecological Indicators, 95 (1): 825–830. doi.org/10.1016/j.ecolind.2018.08.042
- Themistocleus, K., (2017), The use of UAVs for monitoring land degradation, Earth Resources and Environmental Remote Sensing/GIS Applications VIII, edited by Michel., U., Schultz K., Proceedings of SPIE Remote Sensing, Volume 10428,104280E-1; doi: 10.1117/12.2279512
- Tripicchio, P., Satler, M., Dabisias, G., Ruffaldi, E., Avizzano, C.A., (2015), Towards smart farming and sustainable agriculture with drones, In Proceedings of the 2015 International Conference on Intelligent Environments, Prague, 15-17 July 2015: 140-143. DOI: 10.1109/IE.2015.29
- Zhang, C., Kovacs, J.M., (2012), The application of small unmanned aerial systems for precision agriculture: a review, Precision Agriculture 13: 693–712. doi: https://doi.org/10.1007/s11119-012-9274-5
- ••• FAO and ICRAF. (2019). Agroforestry and tenure. Forestry Working Paper no. 8. Rome. 40 pp. Licence: CC BY-NCSA 3.0 IGO
- ••• Agisoft PhotoScan User Manual Professional Edition, Version 1.4, https://www.agisoft.com/pdf/photoscan-pro_1_4_en.pdf accessed in 15.02.2020
- ••• Leica Cyclone Model Documentation - https://leica-geosystems.com/products/laser-scanners/software/leica-cyclone/leica-cyclone-model accessed in 14.02.2020
- ••• User Manuale Pix4Dcapture https://support.pix4d.com/hc/en-us/sections/200733429-Getting-Started-User-Manuals-Special-Install accessed in 15.02.2020
|